В цехах и на агрегатах предприятия эксплуатируются десятки систем, которые накапливают и обрабатывают информацию о производственных и технологических процессах. Кроме того, в помещениях установлены десятки тысяч датчиков, которые непрерывно собирают и передают данные. Подразделению Data Science НЛМК требовался удобный инструмент для работы с получаемыми данными под разрабатываемые модели машинного обучения.
Для решения задачи совместно с компанией «Инфосистемы Джет» было создано озеро данных емкостью 300 Тбайт на базе отечественного дистрибутива Hadoop. Для решения задач сбора, передачи, трансформации и накопления данных были использованы такие сервисы, как Apache Kafka, Apache NiFi, Apache Hive.
В рамках проекта специалисты запустили регулярную загрузку данных в Data Lake из более чем 70 источников (датчиков, а также MES и АСУ ТП), загрузили исторические данные за последние несколько лет работы предприятия и разработали карты данных технологических и производственных процессов отдельных цехов. Кроме того, была разработана модель унифицированной витрины данных, а также процессы загрузки в неё, реализовано управление мета-данными средствами Apache Atlas, настроена централизованная ролевая модель и её интеграция с Active Directory. Это дало возможность исследователям данных оперативнее получать доступ к нужным им данным.
Для контроля работы Data Lake был также настроен комплексный мониторинг состояния сервисов системы в Zabbix, а также разработаны автотесты для контроля целостности и полноты данных. Для особо важных и уязвимых данных была создана возможность резервного копирования: то есть, в случае непреднамеренного уничтожения данных пользователем их можно будет восстановить.