Вестник цифровой трансформации

КАМАЗ распознает детали с помощью машинного зрения
КАМАЗ распознает детали с помощью машинного зрения




13:59 17.08.2022  |  2007 просмотров



КАМАЗ реализовал пилотный проект по разработке системы распознавания деталей на основе машинного зрения. Система на базе решений компании «Моделирование и цифровые двойники» позволит вести более точный учет деталей, улучшить контроль их движения на производстве, повысить эффективность планирования производства и даст возможность сократить воздействие человеческого фактора на многие производственные процессы.

Как отмечают в КАМАЗе, повышение точности учета деталей при производстве сложных изделий может привести к значительному сокращению издержек. Однако номенклатура деталей на производстве включает более 10 тыс. артикулов. Быстрая и безошибочная идентификация каждой детали, подсчет и внесение данных в журналы учета является сложной задачей. Например, один готовый автомобиль содержит тысячи уникальных деталей, каждая из которых проходит свой путь на предприятии, включая производство на нескольких переделах, логистику, хранение. Важно проследить этот путь, учесть количество деталей и заготовок на каждом этапе, чтобы обеспечить стабильность и ритмичность производства, сократить потери, улучшить качество диспетчеризации и производственного планирования.

Автоматизировать этот процесс позволяет технология машинного зрения. Математическая модель, лежащая в ее основе, надежно распознает и подсчитывает детали, даже если в кадре появляется человек, изменяется освещение или фон. При этом можно использовать обычные веб-камеры, не оснащенные искусственным интеллектом, поскольку основная аналитика ведется на стандартном компьютерном сервере. Система, разработанная компанией «Моделирование и цифровые двойники», обеспечивает точность распознавания в диапазоне 95-99%.

Распознавание деталей

Пилотный проект покрывает один крупный производственный участок, где ведется окраска деталей грузовых автомобилей. Система распознает детали, движущиеся на подвесном конвейере, подсчитывает их количество для дальнейшего учета и сверки. Для этого участка характерны многие неблагоприятные факторы, мешающие работать системам машинного зрения – в поле обзора видеокамер попадают посторонние объекты, конвейер с деталями движется неравномерно, специального освещения не предусмотрено. При этом необходимо было учесть следующие требования:

  • Система должна гарантировать устойчивую и быструю работу со всем номенклатурным рядом деталей – идентификацию, подсчет, сравнение.
  • Система не должна требовать чрезмерных вычислительных мощностей для своей работы.
  • Система не должна делать ошибки при подсчете (не более, чем при ручном подсчете).
  • Научить систему идентифицировать новую деталь на производстве должно быть достаточно просто и не требовать больших трудозатрат.

Последнее требование особенно важно, поскольку внесение новых деталей в систему – это не просто ввод цифровых артикулов, а внесение множества образов и последующее обучение математической модели.

В рамках пилотного проекта были реализованы два основных сценария: автоматическое распознавание деталей на конвейере и распознавание детали с помощью мобильного устройства. В первом случае камера закреплена в определенной области конвейера, непрерывно снимая поток деталей и автоматически внося свои показания в ERP-систему. В результате происходит точное распознавание деталей и подсчет их количества, а далее система сверяет данные с количеством в учетной системе.

камаз

Во втором сценарии сотрудник открывает на смартфоне специально подготовленную веб-страницу мобильной части системы распознавания деталей. Когда технику во время сортировки нужно было определить деталь, достаточно было навести его камеру на деталь, сделать снимок и получить на экране ее артикул.

На сегодняшний день в рамках обучения и тестирования моделей стационарной и мобильной систем распознавания, выполнен ряд задач:

  • Подготовлены фотографии деталей для обучения моделей стационарной и мобильной систем.
  • Выполнена разметка образцов деталей для стационарной системы.
  • Произведено обучение модели на размеченных образцах деталей.
  • Выполнено тестирование модели на образцах деталей, которые не участвовали в процессе обучения модели.

Для того чтобы масштабировать систему, экспертам предстоит решить одну из ключевых задач – быстро внести в модель образы всех деталей, выпускаемых предприятием. Десятки тысяч деталей нельзя заносить вручную поштучно – этот процесс потребует значительных временных затрат. Кроме того, это минимизирует эффекты от системы при том, что, по прогнозам экспертов, целевой срок ее окупаемости – не более 1,5 лет. Для решения этой задачи будет создан программный «конвейер» по автоматизации внесения деталей – он позволит образу детали проходить путь от 3D-модели, разработанной конструктором, до модели машинного зрения с минимальным участием человека.

Теги: Искусственный интеллект Компьютерное зрение


На ту же тему: