Для создания решения был организован централизованный сбор данных пассажиров из большого объема внутренних источников данных авиакомпании и внедрена система управления тегами и аналитикой. На основе полученной информации была разработана и протестирована серия моделей машинного обучения для определения рекомендаций по авианаправлениям. Для формирования моделей использовались данные о предыдущих перелетах пассажиров и активности пользователей на сайте. Полученные рекомендации применяются в персонализированных коммуникациях с пассажирами в автоматическом режиме.
При разработке рекомендательной системы использовались программные продукты CleverDATA, включая DMPkit, платформу для организации собственных решений в части сбора, хранения и обработки пользовательских данных.
По результатам А/В-тестирования для ряда сегментов пассажиров блок рекомендаций направлений перелетов на сайте, выполненный с помощью машинного обучения, показал значительный рост конверсии из просмотров в бронирования, чем такой же блок, формируемый специалистами вручную. Для почтовых рассылок также зафиксирован положительный результат работы моделей машинного обучения. Отмечено улучшение показателей по всем кампаниям на основе автоматических рекомендаций по сравнению со случайно сформированным набором рекомендаций.
Реализованный сценарий в S7 Airlines является первым шагом на пути построения персонализированных коммуникаций с пассажирами. Как отметил Никита Матвеев, директор по управлению данными S7 Group, технологии машинного обучения, работа с большими данными – это не просто веяние моды. Цель компании – автоматический подбор для пассажиров именно тех предложений и контента, которые наиболее интересны им. За счет этого планируется повысить эффективность коммуникаций и в целом пассажирский опыт.